Maximum Average Subarray I
Given an array consisting of n integers, find the contiguous subarray of given length k that has the maximum average value. And you need to output the maximum average value.
Example 1:
Input: [1,12,-5,-6,50,3], k = 4
Output: 12.75
Explanation: Maximum average is (12-5-6+50)/4 = 51/4 = 12.75
Note:
- 1 <= k <= n <= 30,000.
- Elements of the given array will be in the range [-10,000, 10,000].
原始写法:
class Solution {
public double findMaxAverage(int[] nums, int k) {
int sum = 0;
int maxSum = Integer.MIN_VALUE;
if (nums.length == k) { //数组的长度等于k时,直接相加
for (int i = 0; i < k; i++) {
sum += nums[i];
}
maxSum = sum;
} else { //数组的长度不等于k时
for (int i = 0; i < nums.length - k + 1; i++) { //重新累加k个元素,更新最大maxSum
sum = 0;
for (int j = 0; j < k; j++) {
sum += nums[i + j];
}
maxSum = Math.max(sum, maxSum);
}
}
return ((double) maxSum) / ((double) k); //输出最大均值
}
}
- 原始写法操作数比较多,在对数组遍历的时候,每次都要进行k次加法操作。可以固定窗的大小,在遍历的过程中只是对窗口两端元素进行操作,节省操作数。
- 注意在最后返回值的时候的强制类型转换,maxSum和k都要转换成double类型之后再相除。
优化写法(每次只操作窗口的两端元素,不用重新累加,节省操作数):
class Solution {
public double findMaxAverage(int[] nums, int k) {
int sum = 0;
int maxSum = 0;
for (int i = 0; i < k; i++) { //设置初始窗口
sum += nums[i];
}
maxSum = sum;
for (int i = k; i < nums.length; i++) { //挪动窗口,更新最大累加和
sum = sum - nums[i - k] + nums[i];
maxSum = Math.max(sum, maxSum);
}
return ((double) maxSum) / ((double) k); //输出最大均值
}
}
- 该题的解题思路为使用滑动窗口,窗口的长度为k。
- 从第k位开始遍历数组,更新最大值即可。